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Cláudio Gomes1,2,3, João Paulo Fernandes4, Gabriel Falcao5,6,
Soummya Kar7, Sridhar Tayur8

1Carnegie Mellon University, USA.
2FEUP, University of Porto, Portugal.
3LIACC, University of Porto, Portugal.

4New York University Abu Dhabi, United Arab Emirates.
5Instituto de Telecomunicações, Portugal.

6Department of Electrical and Computer Engineering, University of
Coimbra, Portugal.

7Department of Electrical and Computer Engineering, Carnegie Mellon
University, USA.

8Tepper School of Business, Carnegie Mellon University, USA.

Contributing authors: claudiogomes@cmu.edu; jpf9731@nyu.edu;
gabriel.falcao@uc.pt; soummyak@andrew.cmu.edu; stayur@cmu.edu;

1 Proof of NP-completeness

For the purposes of proving the NP-completeness of our model, we consider V2V
problem as the decision problem in which an answer to a particular instance of the
V2V model is always True if the constraints Ax = b, l ≤ x ≤ u shown in equation (1)
can be satisfied, and False otherwise.

(IP )A,b,l,u,f :


min f(x)

Ax = b, l ≤ x ≤ u, l, x, u ∈ Zn

A ∈ Zm×n, b ∈ Zm

, (1)
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A proof for the NP-completeness of this model is presented by showing that the
V2V problem belongs to the NP class, and by showing that the V2V problem is NP-
hard. We prove the NP-hardness of the V2V problem by specifying and illustrating a
polynomial reduction from the 3SAT problem to the V2V problem.

1.1 NP class

For any given decision problem, a verifier is an algorithm capable of verifying whether
a solution τ given to an instance p of the problem is correct. Formally, a verifier is a
function V (p, τ), which returns True when τ is correct and False when otherwise.

We define a witness x of a decision problem instance p as a solution to p such
that V (p, x) = True, where V is a verifier of p. That is, a witness is a correct solution
to a problem instance, which, once verified, let us conclude the problem instance is
True. In order for the V2V problem to be in NP, we need to show that: there exists a
polynomial-time verifier that enables us to verify that a witness attests to a particular
instance of the problem to be True; and that the witness should be polynomial in the
size of the problem instance.

For the V2V problem, we can define a polynomial-time verifier as the algorithm
that checks whether the equality and inequality constraints Ax = b, l ≤ x ≤ u
shown in equation (1) are satisfied by a solution x. Concretely, this verifier of the V2V
problem can be defined as

VV2V ((A, b, l, u), x) =

{
True if Ax = b, l ≤ x ≤ u are satisfied,

False otherwise,
(2)

where (A, b, l, u) is a V2V instance and x is a solution to the instance. We remind the
reader that this formulation uses the same notation as in equation (1) for simplicity.
The matrix A and the vectors b, l, and u are represented as a series of constraints and
the solution x is represented as the values for the binary decision variables X, Y , and
Z, as well as the slack variables. VV2V performs matrix multiplication and equality
and inequality comparisons to check whether a given solution is correct for a given
V2V instance. The matrix dimensions have been shown to be polynomial in terms of
the number of vehicles, parking stations, meeting points, and timesteps. Moreover, the
length of the vectors compared in the equality and inequality comparisons is the same
as the number of columns in the matrix. Therefore, since these operations are known
to be computable in polynomial time with respect to the dimensions of the matrix
and of the vectors, VV2V is a polynomial-time verifier.

Considering the verifier VV2V, a witness x for it would be a set of values attributed
to the binary decision variables X, Y , and Z, as well as the slack variables, that
satisfy the constraints of the V2V instance (which is the set of matrices and vectors
A, b, l, and u). In other words, a witness is a solution for a V2V instance that is able
to route all the vehicles to their destinations while also meeting the V2V instance’s
path constraints, battery constraints, parking station charging constraints, and V2V
charging constraints.

Any solution of a V2V instance is a set of values attributed to its binary decision
variables X, Y , and Z, as well as the slack variables. By definition, the length of these
variables is the same as the number of columns of the matrix A of the instance. Again,
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by definition, a witness is a solution of a V2V instance. Therefore, a witness of a V2V
instance is polynomial in terms of the size of the problem instance (A, b, l, and u).

We have shown that there exists a verifier that enables us to verify that a witness
attests to a particular instance of the problem to be True in time polynomial in the
size of the problem instance; and that the size of the witnesses is polynomial in the
size of the problem instance. Thus, we have proven that the V2V problem is in NP.

1.2 Reduction from the 3SAT problem

A problem is considered NP-hard if we can reduce all the problems in NP to it in
polynomial time. To prove that the V2V problem is NP-hard, it suffices to show a
polynomial-time reduction to it from a known NP-hard problem. More concretely, we
will show that the V2V problem is NP-hard by performing a polynomial-time Karp
reduction from the 3SAT problem.

1.2.1 3SAT Problem

The 3SAT problem is a decision problem that is known to be NP-hard and defined as
follows:
Definition 1. The 3SAT problem accepts as input a Boolean formula in conjuctive
normal form such that there are at most three literals in each clause. There may be
any number of atoms and clauses. The output is True if the formula is satisfiable
and False otherwise.
We remind the reader that a literal is one of two types in the context of the 3SAT:
positive literal when it is just the atom; and negative literal when it is the negation of
the atom. Moreover, a Boolean formula in the conjuctive normal form is a conjuction
of one or more clauses, where each clause is a disjunction of literals. Finally, a Boolean
formula is considered satisfiable when there is an assignment of values to the atoms
that will satisfy it. A Boolean formula is considered to be satisfied by an assignment
of values to its atoms when it is True under that assignment. We illustrate an instance
of the 3SAT next:

(x1) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) (3)

Going back to the context of our NP-completeness proof of the V2V problem, we
define a verifier for the 3SAT problem as follows:

V3SAT(p, x) =

{
True if p is True under x,

False otherwise,
(4)

where p is the 3SAT instance, defined by its Boolean formula, and x is a solution to the
instance, defined as a list of (atom = truth value) pairs, with one pair for each atom.
Since the 3SAT problem is in NP, this verifier can be executed in a time polynomial
to the number of atoms and clauses (which is easy to see how, given it only needs
to compute a polynomial number of bitwise operations). Now that a polynomial-time
verifier V3SAT has been defined, we can define a witness x of a 3SAT instance p as a list
of (atom, truth value) pairs such that V3SAT(p, x) = True. In other words, the witness
x of a 3SAT instance is an assignment of values to the atoms such that it satisfies the
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Boolean formula of the instance. As an example, (x1 = True, x2 = False, x3 = True)
is a witness for the 3SAT instance shown in (3).

1.2.2 Reduction Steps

We show next the reduction steps from the 3SAT problem to the V2V problem. Let
us suppose that we are given an instance of 3SAT with n atoms x1, . . . , xn and m
clauses c1, . . . , cm. Then we construct the space network graph G = (N,A) and the
other parameters for the equivalent V2V instance as follows:

• For each clause cj , we create a node satj ∈ M , which is a meeting point (M ⊂ N),
and a node fj ∈ N , which are connected by a direct edge from satj to fj .

• For each atom xi, we create a starting node si ∈ N . Next, we create a node
truei ∈ M and a node falsei ∈ M , which are meeting points. Afterwards, we
create directed edges from si to truei and to falsei.

• For each clause cj and for each atom xi, if cj has a literal of xi, we create a directed
edge from truei to fj and from falsei to fj ; if cj has a positive literal of xi, we create
a directed edge from truei to satj ; and if cj has a negative literal of xi, we create a
directed edge from falsei to satj .

• For each atom xi, we denote as ki the number of literals it has among all clauses.
Next, we create ki EVs vi,1 to vi,ki , all located on si. For each vehicle vi,o, o ∈
{1, . . . , ki}, we set its final destination as fj , where cj is the clause that contains
the oth literal of the atom xi. SOCvi,o is 1 if o ̸= 1 and 3ki + 1 if otherwise.

• For each clause cj , we create an EV vsatj located at satj and whose final destination
is fj . SOCvsat

j
is 0.

• For each EV v, we set ei = 1 (energy that EV v provides to another EV in a
timestep) and MAXSOCv as a sufficiently large number, such as 3m+ 1.

• All the arcs (or directed edges) created have a time duration of 1 and a traversal
cost of 1.

• Finally, we define T = 3K +6, where K is the greatest number of literals any atom
xi has among all clauses (K = max (k1, . . . , kn)).

With the construction steps listed above, we have defined all the parameters required
for the input of a V2V problem. Therefore, the graph G we just constructed will
be transformed into a time-space network graph GTS , finalizing the setup of a V2V
instance from a 3SAT instance.

1.2.3 Proof of Correctness for the Reduction

In order to show that our reduction from the 3SAT problem to the V2V problem is
correct, we prove that the constructions steps shown are equivalent to a function f
mapping instances of the 3SAT problem to instances of the V2V problem, such that:

answer to p is True ⇐⇒ answer to f(p) is True, (5)

where p is an instance of the 3SAT problem. f is also known as a Karp reduction from
the 3SAT problem to the V2V problem.
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Since we have proven that both the 3SAT problem and the V2V problem are in
NP, we can leverage the definition of NP to show that a mapping function f is a Karp
reduction from the 3SAT problem to the V2V problem if and only if for all instances
p of the 3SAT problem the following is true:

There exists a polynomial-
size witness x such that
V3SAT(p, x) = True.

⇐⇒
There exists a polynomial-
size witness z such that
VV2V(f(p), z) = True.

(6)

where V3SAT and VV2V are the previously defined polynomial-time verifiers for the
3SAT problem and the V2V problem, respectively.

We present a series of lemmas and their proofs next. These lemmas culminate into
a theorem that shows that our reduction is a Karp reduction and, consequently, that
the V2V problem is NP-hard (and thus NP-complete).
Lemma 1. The reduction from the 3SAT problem to the V2V problem shown in 1.2.2
is polynomial in time and size in terms of the number of atoms and clauses.

Proof. Let us suppose that we are given an instance of 3SAT with n atoms and m
clauses. As shown by the construction steps, the reduction creates an instance of the
V2V problem that uses a space network graph with 3n + 2m nodes and, at most,
2n+10m arcs. As an example to clarify the number of arcs, a clause cj implies having
an arc from satj to fj and may have three atoms xi, xj , xk with positive literals in it
and, thus, also have arcs from the nodes truei, truej , truek, falsei, falsej , falsek to fj ,
as well as arcs from the nodes truei, truej , truek to satj .

Lemma 2. If the answer to a 3SAT instance is True, then the answer to its reduction
to a V2V instance is also True.

Proof. Consider a 3SAT instance p with n atoms and m clauses. Let us assume that
the answer to p is True. Therefore, there exists a polynomial-size witness x such that
V3SAT (p, x) = True. We remind the reader that a witness for a 3SAT instance is an
assignment of values to the atoms of the Boolean formula of the instance, in the form
of a list of (atom = truth value) pairs. Hence, for each variable xi of the instance,
we have the pair (xi,True) or the pair (xi,False) in the list. This witness x can be
transformed into a witness z such that we have VV2V(f(p), z) = True:

• For each atom xi, if its pair is True, we move all EVs vi,1, . . . , vi,ki
from si to truei,

otherwise to falsei. This step happens from t = 0 to t = 1 and takes one unit of
energy from each vehicle involved.

• For each atom xi and o ∈ {2, 3, . . . , ki}, vehicle vi,1 will charge vi,o with 3 units of
energy from t = 3o− 5 to t = 3o− 2.

• For each atom xi and o ∈ {1, 2, . . . , ki}, if there is an arc between the current node
of vi,o and satj , where cj is the clause that contains the oth literal of the atom xi,
then vi,o will move to satj , charge vsatj with one unit of energy, and then move to
fj ; otherwise, if there is no arc between the current node of vi,o and satj , then vi,o
will be in the same node for two timesteps and then move to fj . If o ≥ 2, vi,o will
perform these actions from t = 3o− 2 to t = 3o+ 1. vi,1 will perform these actions
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last, from t = 3ki + 1 to t = 3ki + 4. These actions consume 1 or 3 units of energy
from each vehicle involved, depending on whether they go directly to fj .

• After being charged by all possible vehicles, all vsat1 , . . . , vsatm will move to f1, . . . , fm,
respectively. This happens during the last timestep, from t = T − 2 to t = T − 1
(from t = 3K + 4 to t = 3K + 5, K = max(k1, . . . , kn)).

In order for VV2V(f(p), z) = True, witness z will have to assign the required actions
in the V2V instance f(p) such that all the EVs reach their destinations. We prove
that this transformation from the witness x is, indeed, a valid witness z:

• Since T = 3K + 6 and ki ≤ K,∀i ∈ {1, . . . , n}, all the steps above do not exceed
the number of timesteps specified for the V2V instance.

• For each atom xi, if its pair is True, vi,1 arrives to truei with 3ki units of energy,
all the vehicles vi,2, . . . , vi,ki arrive to truei with 0 units of energy. After arrival,
they each get 3 units of energy from vi,1, which loses 3(ki − 1) units of energy. All
in all, all the vehicles vi,1, . . . , vi,ki leave truei with 3 units of energy. By the same
logic, for each atom xi, if its pair is False, all the vehicles vi,1, . . . , vi,ki leave falsei
with 3 units of energy. Hence, for each atom xi, each of the vehicles vi,1, . . . , vi,ki

has enough of units of energy in case it moves directly to its respective fj , or even
if it moves to its respective satj , charges its respective vsatj , and then moves to its
destination fj .

• It remains to prove that, for each clause cj , v
sat
j reaches their destination fj , which

is equivalent to proving that vsatj receives at least one unit of energy, as it only
needs one unit to move to fj . We have that all the clauses of the 3SAT instance
p are satisfied by the list of (atom = truth values) pairs defined by the witness x.
Therefore, there is at least one literal in each clause cj that is satisfied by some atom
xi with an assigned truth value. Moreover, considering the construction steps for the
instance f(p), there will be an arc between truei and satj if the literal is positive,
and an arc between falsei and satj if otherwise. We also have that, by mapping, if o
is the index of the literal for the atom xi, the vehicle vi,o is moved from si to truei if
the value assigned to xi is True, and to falsei if otherwise. Hence, vi,o will move into
a node that coincides with the arc that connects that node to satj . Consequently,
vi,o will move to satj and charge its respective vsatj before moving to its respective
fj . All in all, it is proven that, for each vsatj , there is at least one vehicle charging
one unit of energy to it and, thus, vsatj is able to reach fj .

Lemma 3. If the answer to a V2V instance f(p) reduced from a 3SAT instance is
True, then all its witnesses, for any atom xi, will have all the vehicles vi,1 to vi,ki

pass through one and only one of the meeting points truei or falsei.

Proof. We remind the reader that, for any atom xi of the 3SAT instance, the reduction
to a V2V instance will have ki related vehicles vi,1 to vi,ki , where ki is the number of
literals the atom xi has among all clauses. In order for each of these vehicles to reach
their destination fj , they need to traverse at least two arcs, as the shortest path goes
from the starting node si to one of the meeting points truei or falsei, and then from
that meeting point to fj . Therefore, each vehicle needs at least two units of energy to
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reach their destination. By construction, vi,1 has an associated SOCvi,1 = 3k+1, while
vi,2 to vi,ki have an associated SOCvi,2 = · · · = SOCvi,ki

= 1. Hence, all vehicles
but one need to be charged one unit of energy in order to reach their destination. For
this to be possible, they need to traverse to one of the meeting points truei or falsei.
When all ki vehicles move to a meeting point truei or falsei, they consume one unit of
energy, all arriving to the meeting point with 0 units available, except for vi,1, which
has 3×ki units available. Hence, in order for all vehicles to reach their destination, at
least ki of the 3ki units stored in vi,1 need to be shared among all the vehicles. This
implies that vehicles need to be in the same meeting point truei or falsei as vi,1 in
order to get a unit of energy, since vehicles in truei cannot move to falsei and vice-
versa (there is no path between truei and falsei, as the only way to enter into these
nodes is via the arcs from si and there is no arc to enter into si).

Lemma 4. If the answer to a V2V instance reduced from a 3SAT instance is True,
then the answer to that 3SAT instance must be True.

Proof. Let us assume that we have a witness z for the V2V instance f(p), such that
VV2V(f(p), z) = True:

• Then, by Lemma 3, for each atom xi of the instance p, we have that all EVs vi,1 to
vi,ki

go from si to the same meeting point truei or falsei.
• Moreover, by definition, for each clause cj of the instance p, we have that the vehicle
vsatj arrives to its destination fj .

The second item implies that, for each node satj , we have at least one arc from some
node truei or falsei to satj , and that at least one vehicle vi,o moved from that node
to satj in order to give one unit of energy to vsatj , where o is the index of the literal
for the atom xi of the instance p, enabling vsatj to reach its destination.

Together with the first item, we have that the meeting points truei and falsei chosen
by a witness z for the vehicles corresponding to each atom xi can be transformed
into a witness x of the 3SAT instance p, by assigning a value of True to xi when
its vehicles vi,1, . . . , vi,ki

pass through truei, and a value of False when otherwise.
This transformation is a witness of p, since, by construction, the existence of an arc
from some node truei or falsei to the node satj implies that a positive or negative
literal of some atom xi exists in the clause cj , respectively, and that the same clause
cj is satisfied by the atom xi, as it has the same value as that literal. Hence, the
existence of a witness for p implies that the answer to p is also True, since we have
V3SAT(p, x) = True. Thus, the answer to the 3SAT instance p cannot be False when
the answer to its reduction to a V2V instance is True.

Theorem 5. The answer to a 3SAT instance p is True if and only if the answer to
its reduction to a V2V instance f(p) is True. The reduction f is a Karp reduction.

Proof. The proof follows from combining Lemmas 1, 2 and 4. Thus, by definition, the
reduction f is a Karp reduction.
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false2
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false3
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f1
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sat3
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f4

vi si fi SOCi

v1,1 s1 f1 7
v1,2 s1 f4 1
v2,1 s2 f2 10
v2,2 s2 f3 1
v2,3 s2 f4 1
v3,1 s3 f2 10
v3,2 s3 f3 1
v3,3 s3 f4 1
vsat1 sat1 f1 0
vsat2 sat2 f2 0
vsat3 sat3 f3 0
vsat4 sat4 f4 0

Meeting points are

denoted as black nodes.

∀i ∈ {1, 2, 3} :

MAXSOCi = 1,

ei = 1.

∀a :

ea = 1,

da = 1.

T = 15.

Green dashed lines show

the paths of a witness like

(x1, x3 = True, x2 = False).

Fig. 1 Illustration of a reduction from a 3SAT instance to a V2V instance.

1.3 Proof of NP-completeness

Now that we have proved that the V2V problem is in NP and is NP-hard, then, by
definition, the V2V problem is NP-complete. As an aid for the reader to understand
the proof, Figure 1 shows an illustration of the reduction from the 3SAT instance
shown in equation (3).
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